
Pertanika J. Sci. & Technol. 28 (1): 163 - 177 (2020)

ISSN: 0128-7680
e-ISSN: 2231-8526

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

Article history:
Received: 27 July 2019
Accepted: 15 November 2019
Published: 13 January 2020

ARTICLE INFO

E-mail addresses:
jtyusiong@up.edu.ph (John Paul Tan Yusiong)
pcnaval@dcs.upd.edu.ph (Prospero Clara Naval, Jr.)
*Corresponding author

© Universiti Putra Malaysia Press

DFRNets: Unsupervised Monocular Depth Estimation Using a 
Siamese Architecture for Disparity Refinement
John Paul Tan Yusiong1,2* and Prospero Clara Naval, Jr.1

1Computer Vision and Machine Intelligence Group, Department of Computer Science, College of Engineering, 
University of the Philippines, Diliman, Quezon City, Philippines
2Division of Natural Sciences and Mathematics, University of the Philippines Visayas Tacloban College, 
Tacloban City, Leyte, Philippines

ABSTRACT

Monocular depth estimation is gaining much interest in the computer vision community 
because it has broad applications in autonomous driving systems, robotics, and scene 
understanding. Significant progress has been made in solving the monocular depth 
estimation problem using deep learning techniques. Unsupervised learning methods are 
particularly appealing since the problem can be treated as an image reconstruction task, 
thereby forgoing the need for ground-truth depths. This paper presents an unsupervised 
approach to training convolutional neural networks for monocular depth estimation by 
introducing a novel architecture called DFRNets. DFRNets shares weight parameters 

between the image reconstruction sub-
network and the disparity refinement sub-
network and adopts a multi-scale structure 
for disparity predictions. The proposed 
method computes dense disparity maps 
directly from monocular images and refines 
them in an end-to-end fashion to reduce 
visual artifacts and blurred boundaries, 
thereby improving the method’s overall 
performance. Experiment results using the 
KITTI test set showed that the proposed 
method outperformed many state-of-the-
art methods, since it achieved the best 
performance on the two distance ranges: 
0–80 meters and 1–50 meters. Moreover, the 
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qualitative results revealed that the method generated more detailed and accurate depth 
maps of the scenes, with no border artifacts around the image boundary.

Keywords: Disparity refinement, monocular depth estimation, siamese architecture, unsupervised learning 

methods

INTRODUCTION

Depth estimation is a fundamental problem in computer vision, with various applications in 
autonomous driving systems, robotics, and scene understanding. The problem of estimating 
depth from a single image is ill-posed and inherently ambiguous, and as a result, a variety 
of methods to solve it have been proposed (Cadena et al., 2016; Liu et al., 2014; Saxena et 
al., 2005; Saxena et al., 2008). With the rapid development of deep learning methods and 
the availability of large training datasets, the performance of depth estimation models has 
improved significantly. Recently, there has been a growing interest in solving the monocular 
depth estimation problem using deep learning methods (Eigen et al., 2014; Garg et al., 
2016; Godard et al., 2017; Yusiong & Naval, 2019; Zhou et al., 2017) since these methods 
combine local and global contexts to automatically infer a depth map from a single image. 

Existing monocular depth estimation methods can be divided into two categories: 
supervised and unsupervised. Supervised learning methods require many training data 
with ground-truth depths since models must be trained using these ground-truth depths 
(Eigen et al., 2014). However, such training data may not always be available since it is 
quite challenging and expensive to collect numerous and diverse training data with ground-
truth depths from different real-world scenarios; these ground-truth depths must also be 
carefully aligned and calibrated. Unsupervised learning methods overcome this limitation 
by training models to infer depth; this is accomplished by minimizing the photometric loss 
using a warping-based view synthesis procedure, thereby forgoing the need for ground-
truth depths. The unsupervised methods can be further sub-divided into two groups based 
on the training data used: methods that employ monocular video sequences (Zhou et al., 
2017) and methods that use only rectified stereo images (Garg et al., 2016; Godard et al., 
2017; Yusiong & Naval, 2019).

Unsupervised learning methods also have certain limitations. As shown in the work of 
Zhou et al. (2017), training a model from monocular video sequences lowers the quality of 
depth predictions at test time. Also, in addition to estimating depth, the model requires a 
separate pose network to determine the ego-motion between temporal image pairs. It also 
requires the intrinsic camera parameters and the video frames as inputs during training. 
Moreover, models trained on monocular video sequences must address a scene’s motion 
or depth–speed ambiguity and occluded regions. For the latter, occlusion masks must be 
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integrated into the loss function to indicate the valid pixel coordinates when computing 
the training loss (Mahjourian et al., 2018; Zhou et al., 2017). In contrast to training on 
monocular video sequences, with rectified stereo images (Garg et al., 2016; Godard et 
al., 2017; Yusiong & Naval, 2019), the model requires only the images as inputs during 
training, and it can achieve promising results even though the predicted depth maps have 
visual artifacts and blurred boundaries. These visual artifacts and blurred boundaries are due 
to occlusions, since some parts of the scene are not visible given a fixed camera baseline. 
To resolve these issues and improve the model’s overall accuracy, mechanisms to handle 
occlusions are necessary. One such mechanism is the introduction of a post-processing 
step to refine the predicted disparity maps, but this decouples the final disparity maps from 
the training (Godard et al., 2017).

This research is another step toward solving the monocular depth estimation problem 
using the unsupervised learning method. First, this paper addresses the issue of decoupling 
depth estimation from disparity refinement by presenting a deep network that is trained 
using only rectified stereo images but can predict and refine a disparity map from a single 
image simultaneously and in an end-to-end manner. The proposed approach transforms the 
idea of a post-processing step into a trainable component of the model presented here so that 
it can perform depth estimation and refinement simultaneously, unlike in previous models 
(Garg et al., 2016; Godard et al., 2017; Yusiong & Naval, 2019), which can only perform 
depth estimation. The proposed method employs a novel Siamese architecture called 
DFRNets that has two autoencoders. These autoencoders generate high-quality disparity 
maps by sharing weight parameters between the image reconstruction sub-network and 
the disparity refinement sub-network, and they adopt a multi-scale structure for disparity 
predictions. In essence, training a model with this method requires performing a forward 
pass using the proposed Siamese architecture and inputting the original images to the 
image reconstruction sub-network and the horizontally flipped images to the disparity 
refinement sub-network. The predicted disparity maps are fused with a pixel-wise mean 
operation, while image boundaries are handled in a manner similar to that used by Godard 
et al. (2017). Next, the DFRNets is trained to jointly perform learning and refinement of 
depth maps in an end-to-end manner by reformulating an existing training loss function 
that was initially designed for depth estimation only. This paper presents a comprehensive 
evaluation of the proposed method using the challenging KITTI 2015 driving dataset, and 
experiment results show that, with the proposed Siamese architecture, the model achieves 
state-of-the-art results in an unsupervised setting, both quantitatively and qualitatively. The 
proposed unsupervised framework generates better disparity maps than other frameworks 
by converting the post-processing step into a trainable component of the model. It does this 
by training the model to simultaneously perform depth estimation and disparity refinement 
in an end-to-end manner using rectified stereo images only. This work is the first of its kind 
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to use a Siamese network consisting of two autoencoders that share weight parameters 
to handle the unsupervised monocular depth estimation problem by training the model to 
learn two related tasks jointly. The sample predictions in Figure 1 reveal that the proposed 
method effectively recovers scene structures such as street symbols. The main contributions 
of this work are the following:

1. It introduces an unsupervised learning framework that can jointly perform learning 
and refinement of depth maps in an end-to-end manner, thereby transforming 
the idea of a post-processing step into a trainable component of the model. This 
framework deviates from the usual approach, which involves training a model for 
depth estimation only.

2. It employs a novel Siamese architecture called DFRNets to simultaneously perform 
depth estimation and refinement of depth maps. This architecture consists of two 
autoencoders and shares weight parameters between the image reconstruction 
sub-network and the disparity refinement sub-network. 

3. It reformulates an existing training loss function for joint learning and refinement 
of depth maps even though it was originally designed for depth estimation only.

4. It demonstrates the effectiveness of the proposed method using the KITTI 2015 
driving dataset and compares the results against existing state-of-the-art methods 
in unsupervised monocular depth estimation, both quantitatively and qualitatively. 

METHODOLOGY

This section describes the proposed method in detail. Essentially, the proposed method 
involves learning to simultaneously predict and refine disparity maps in an unsupervised 
manner, that is, in an end-to-end manner with only rectified stereo images as inputs. Figure 
2 provides an overview of the framework and its components. At the core of this method 
is a Siamese network architecture called DFRNets, which consists of two autoencoders 

Figure 1. Example predictions generated by the proposed method using the KITTI 2015 test set. Top to bottom: 
input left image, ground-truth depth map, and the proposed method’s prediction. 
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that share weight parameters. More precisely, each sub-network of the DFRNets is an 
autoencoder; one handles the image reconstruction task while the other handles the visual 
artifacts and blurred boundaries to refine the predicted disparity maps.

Figure 2. Network architecture: (a) DFRNets, (b) disparity fusion and refinement module

Network Architecture

The proposed framework adopts a Siamese network using the AsiANet model (Yusiong 
& Naval, 2019) as the autoencoder, but the autoencoder can be any architecture that can 
produce a disparity map. The Siamese architecture consists of two sub-networks: the image 
reconstruction sub-network and the disparity refinement sub-network. These two sub-
networks share weight parameters to perform two different tasks simultaneously: predicting 
disparity maps and refining the predicted disparity maps. The image reconstruction sub-
network receives the original left images IL as inputs, while the disparity refinement sub-
network receives the horizontally flipped left input images IflipL. The sub-networks produce 
two pairs of disparity maps (dL1, dR1) and (dL2, dR2) for each scale, respectively.

Image Reconstruction Module. The main objective of training the Siamese network is 
to minimize image reconstruction errors between the input image I and the reconstructed 
image I*; therefore, the image reconstruction sub-network contains a module that transforms 
the disparity maps dL1 and dR1 and the images IR and IL to reconstruct I*

L and I*
R at each 

scale using the sampler from the spatial transformer network (Jaderberg et al., 2015) that 
performs bilinear interpolation. Essentially, the module accepts two pairs of inputs (IL, dR1) 
and (IR, dL1) to reconstruct I*

R and I*
L at each scale, respectively.

Disparity Fusion and Refinement Module. As shown in Figure 2(a), the disparity 
refinement sub-network contains a disparity fusion and refinement module that processes 
the disparity maps (dL1, dR1) and (dL2, dR2) and outputs a pair of refined disparity maps (DfinalL, 
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DfinalR) at each scale. This module is one of the main features of the DFRNets; it processes 
the inputted pairs of disparity maps by performing fusion and refinement to generate a pair 
of refined disparity maps, (DfinalL, DfinalR). Although DFRNets generates (DfinalL, DfinalR) from 
the left image IL at four different scales, only the left disparity map DfinalL with scale equal 
to 1 is relevant at test time. This module has three key components: the left–right disparity 
reconstructor, the disparity flip operator, and the disparity fusion and boundary processor. 
The left–right disparity reconstructor, which is based on the left–right consistency term from 
Godard et al. (2017), enforces coherence when generating two pairs of refined disparity 
maps (DL1, DR1) and (DL2, DR2), which are given in Equation 1, 2, 3 and 4.

     [1]
,     [2]
,     [3]
.     [4]

In designing this module, the authors expanded the left–right consistency principle 
of Godard et al. (2017) instead of merely using it as a term in the training loss function. 
Specifically, extending this principle required creating a left–right disparity reconstructor 
that generates two pairs of refined disparity maps from the Siamese network. Conversely, 
the disparity flip operator performs the horizontal flip operation on the disparity maps (DL2, 
DR2) to produce (DflipL, DflipR). To generate the final left disparity map DfinalL, the disparity 
fusion and boundary processor fuses (DL1, DflipL) by performing a pixel-wise mean operation 
and then removing the disparity ramps on the boundary pixels using the same technique as 
described in Godard et al. (2017). Essentially, removing the disparity ramps on the boundary 
pixels of the final left disparity map entails assigning the first 5% of DflipL to the left of the 
final left disparity map and the last 5% of DL1 to the right of DfinalL. A similar step is taken 
to fuse (DR1, DflipR) and produce the final right disparity map DfinalR. Integrating this module 
as a trainable component of the model improves the model’s performance significantly 
because it enables it to more effectively address the visual artifacts and blurred boundaries 
while performing depth estimation.

Loss Function

The model is designed to adopt an existing training loss function by reformulating it 
for joint depth estimation and refinement using a Siamese architecture, even though the 
original function was designed for depth estimation only and did not consider disparity 
refinement as a trainable component. As shown in Equation (5), the training loss at each 
scale s is a combination of three terms – appearance dissimilarity, disparity smoothness, 



DFRNets: Unsupervised MDE Using a Siamese Architecture

169Pertanika J. Sci. & Technol. 28 (1): 163 - 177 (2020)

and left–right consistency – and is aggregated through four different scales for a total loss 
of ℒ = ∑ ℒ𝑠4

𝑠=1 , given in Equation 5, 6, 7 and 8.

ℒ𝑠 = 𝛼ℒ𝑎𝑝𝑝 + 𝛽ℒ𝑠𝑚𝑜𝑜𝑡ℎ + 𝛾ℒ𝑙𝑟, [5]

ℒ𝑎𝑝𝑝 = ℒ𝑎𝑝𝑝
𝑙𝑒𝑓𝑡 + ℒ𝑎𝑝𝑝

𝑟𝑖𝑔ℎ𝑡, [6]

ℒ𝑠𝑚𝑜𝑜𝑡ℎ = ℒ𝑠𝑚𝑜𝑜𝑡ℎ
𝑙𝑒𝑓𝑡 + ℒ𝑠𝑚𝑜𝑜𝑡ℎ

𝑟𝑖𝑔ℎ𝑡  , [7]

ℒ𝑙𝑟 = ℒ𝑙𝑟
𝑙𝑒𝑓𝑡 + ℒ𝑙𝑟

𝑟𝑖𝑔ℎ𝑡, [8]

where ℒ𝑎𝑝𝑝 measures the quality of the reconstructed images, ℒ𝑠𝑚𝑜𝑜𝑡ℎ  encourages the 
predicted disparities to be locally smooth, ℒ𝑙𝑟  enforces consistency between the left and 
right disparities, and 𝛼,𝛽, 𝛾 are the loss weightings for each term. This section provides 
details only for the left components ℒ𝑙𝑒𝑓𝑡 of the loss function since the right components  
ℒ𝑟𝑖𝑔ℎ𝑡 are defined symmetrically.

Appearance Dissimilarity Term. The appearance dissimilarity term measures the quality 
of the reconstructed image and usually involves minimizing the dissimilarity of pixel-wise 
correspondence between a target image and a reconstructed image. This term is a linear 
combination of the single-scale structural similarity (SSIM) term (Wang et al., 2004) and 
the L1 photometric term, as defined in Equation (9). It is used in several studies to evaluate 
the quality of a reconstructed image (Godard et al., 2017; Li et al., 2018; Mahjourian et 
al., 2018; Wang et al., 2018; Yin & Shi, 2018; Yusiong & Naval, 2019). This term is given 
in Equation 9.

ℒ𝑎𝑝𝑝
𝑙𝑒𝑓𝑡 = 1

𝑁
∑ 𝜔 1−𝑆𝑆𝐼𝑀 𝐼𝐿 𝑥 ,𝑦 , 𝐼∗𝐿 𝑥,𝑦

2 + 1 −𝜔 𝐼𝐿 𝑥, 𝑦 − 𝐼∗𝐿 𝑥, 𝑦𝑥,𝑦 [9]

with a 3-by-3 box filter for the SSIM term, and 𝜔 is set to 0.85. 

Disparity Smoothness Term. The disparity smoothness term is used to regularize the 
predicted disparities in textureless, low-gradient, and occluded regions to enforce the 
assumption that the predicted disparities must be locally smooth. As shown in Equation 
(10) and described in Godard et al. (2017) and Mahjourian et al. (2018), this term considers 
the gradient of the corresponding input image to allow for sharp changes in depth at pixel 
locations where there are sharp changes in the image. However, to train the DFRNets, this 
term is modified to include the final left disparity map DfinalL in the training loss. This term 
is given in Equation 10.

ℒ𝑠𝑚𝑜𝑜𝑡ℎ
𝑙𝑒𝑓𝑡 = 1

𝑁
∑ 𝜕𝑥𝐷𝑓𝑖𝑛𝑎𝑙𝐿

𝑥, 𝑦 𝑒− 𝜕𝑥𝐼𝐿 𝑥,𝑦 + 𝜕𝑦𝐷𝑓𝑖𝑛𝑎𝑙𝐿
𝑥, 𝑦 𝑒− 𝜕𝑦𝐼𝐿 𝑥,𝑦

𝑥,𝑦 . [10]

Left–Right Consistency Term. As described in Godard et al. (2017), Li et al. (2018), and 
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Yusiong and Naval (2019), the left–right consistency term enforces consistency between 
the left and right disparities and is crucial when generating the refined disparity maps. This 
modified term considers the final left disparity map DfinalL. This term is given in Equation 11.

ℒ𝑙𝑟
𝑙𝑒𝑓𝑡 = 1

𝑁
∑ 𝐷

𝑓𝑖𝑛𝑎𝑙𝐿
𝑥, 𝑦 − 𝐷

𝐿1
𝑥,𝑦𝑥,𝑦 . [11]

Enabling the model to handle visual artifacts and blurred boundaries requires a simple 
modification to the disparity smoothness term and the left–right consistency term to 
incorporate the refined disparity maps, DfinalL and DfinalR, in the training loss computation. 
Reformulating the existing loss function is necessary to allowing the training algorithm to 
optimize all the outputs of the network by minimizing training loss, which enables the model 
to generate depth maps of the scenes with no border artifacts around the image boundary.

Implementation Details

This research utilized TensorFlow (Abadi et al., 2016) to implement DFRNets and trained 
the model from scratch using a single GTX 1080 Ti (11GB) GPU. The Adam optimizer 
(Kingma & Ba, 2015) with 𝛽1 = 0.9,𝛽2 = 0.999, and 𝜀 = 10−8 trained the model for 50 
epochs with a batch size of 2 by optimizing the training loss. The learning rate was initially 
set to 𝜆 = 10−4 for the first 30 epochs and halved every 10 epochs afterward until the 
training was completed. The weightings of the different terms of the loss function were  
𝛼 = 1.0,𝛽 = 0.1

2𝑠 , and 𝛾 = 1.0, where s is the output scale. The dimensions of the stereo 
image pairs were reduced to 256 by 512 for training, but at testing time, the network could 
predict disparity maps for single images of varying dimensions. The weight parameters were 
initialized randomly using the Xavier initialization procedure (Glorot & Bengio, 2010). To 
prevent overfitting, L2 regularization was applied to all the weight parameters by adding a 
small constant, 0.00001. Furthermore, DFRNets was trained using the same train/test split 
as used in Eigen et al. (2014); this split is often referred to as the Eigen split. The dataset 
consisted of 22,600 stereo image pairs for training and 697 for testing. Training involved 
data augmentation, as in Godard et al. (2017).

RESULTS AND DISCUSSION

This section presents the results of the experiments conducted to evaluate the proposed 
framework, DFRNets, for monocular depth estimation in an unsupervised manner. The 
model was evaluated using the publicly available KITTI 2015 driving dataset (Gieger et 
al., 2012). Training the model entailed the use of rectified stereo image pairs, while testing 
required the left image to generate a depth map; the corresponding Velodyne data served as 
the ground-truth depth for benchmarking. Furthermore, the proposed model’s performance 
was compared both quantitatively and qualitatively with that of existing state-of-the-art 
methods. An ablation study was also conducted to show the versatility of the proposed 
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framework and the advantages of integrating a disparity refinement component into the 
depth estimation model. 

Specifically, the performance of DFRNets in monocular depth estimation was evaluated 
using the Velodyne ground-truth data of the test images. The experiment results were 
compared with various state-of-the-art methods by directly using the results reported in 
the original papers. As in the previous studies, an experiment was performed that involved 
pre-training the network on the Cityscapes dataset and then fine-tuning it on KITTI. Table 
1 and Table 2 show the quantitative comparisons between the proposed model and other 
state-of-the-art methods in unsupervised monocular depth estimation using the depth 
evaluation metrics introduced in Eigen et al. (2014). For the training dataset, K means 
trained on the KITTI dataset, and CS + K means pre-trained on the Cityscapes dataset and 
fine-tuned on the KITTI dataset. For the training protocol, depth means the methods used 
ground-truth depths at training time, mono means the methods used monocular sequences 
for training, and stereo means the methods used rectified stereo images for training. The 
evaluation results using the KITTI test set reveal that the proposed model achieved the best 
performance on the two distance ranges: 0–80 meters and 1–50 meters, since it obtained 
the lowest errors and achieved the highest accuracy compared to the previous methods.

In addition to the quantitative results, qualitative comparisons to certain related 
methods using the KITTI test set, as shown in Figure 3, reveal that the proposed method 
generated depth maps that are visually more accurate than those produced by other methods, 
since these predicted depth maps have no border artifacts around the image boundary. 
Also, these results show that the proposed method significantly reduced the ghosting 
and shadow artifacts around the boundaries of the objects, thereby enabling the model to 
capture the underlying geometry of distant objects and objects in areas with thin structures 
and homogeneous regions. Moreover, the model can successfully reconstruct various 
objects that are difficult to recover, such as poles, tree trunks, and street symbols, and 
recover scene structures with more explicit object boundaries. These results demonstrate 
that simultaneously generating depth maps from the monocular images and refining the 
predicted depth maps in an end-to-end manner lead to better performance.

Architectural Analysis

The ablation study introduced three more variants by using ResNet50 (He et al., 2016), the 
modified DispNet with skip connections (Godard et al., 2017), and U-Net (Ronneberger et 
al., 2015) to better illustrate the effectiveness of jointly performing depth estimation and 
refinement instead of using a post-processing heuristic that is decoupled from the training 
process. Some modifications to the different network architectures were performed to 
incorporate a multi-scale structure for disparity predictions into the decoder section of the 
network. Experiments involved using the KITTI 2015 driving dataset to train the different 
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Method Training 
Dataset

Train Error Metric
(Lower Is Better)

ARD SRD RMSE
(Linear)

RMSE
 (Log)

Depth range: 0–80 meters
Eigen et al. (2014) Coarse K Depth 0.194 1.531 7.216 0.273
Eigen et al. (2014) Coarse + Fine K Depth 0.190 1.515 7.156 0.270
DDVO (Wang et al., 2018) K Mono 0.151 1.257 5.583 0.228

CS + K Mono 0.148 1.187 5.496 0.226
GeoNet (Yin & Shi, 2018) K Mono 0.155 1.296 5.857 0.233

CS + K Mono 0.153 1.328 5.737 0.232
Mahjourian et al. (2018) K Mono 0.163 1.240 6.220 0.250

CS + K Mono 0.159 1.231 5.912 0.243
Zhou et al. (2017) K Mono 0.208 1.768 6.856 0.283

CS + K Mono 0.198 1.836 6.565 0.275
Godard et al. (2017) K Stereo 0.148 1.344 5.927 0.247

CS + K Stereo 0.124 1.076 5.311 0.219
AsiANet 
(Yusiong & Naval, 2019)

K Stereo 0.145 1.349 5.909 0.230
CS + K Stereo 0.128 1.161 5.470 0.213

Ours (DFRNets) K Stereo 0.133 1.137 5.332 0.212
CS + K Stereo 0.114 0.927 4.885 0.194

Depth range: 1–50 meters
GeoNet (Yin & Shi, 2018) K Mono 0.147 0.936 4.348 0.218
Mahjourian et al. (2018) K Mono 0.155 0.927 4.549 0.231

CS + K Mono 0.151 0.949 4.383 0.227
Zhou et al. (2017) K Mono 0.201 1.391 5.181 0.264

CS + K Mono 0.190 1.436 4.975 0.258
Garg et al. (2016) L12 Aug. 8x K Stereo 0.169 1.080 5.104 0.273
Godard et al. (2017) K Stereo 0.140 0.976 4.471 0.232

CS + K Stereo 0.117 0.762 3.972 0.206
AsiANet 
(Yusiong & Naval, 2019)

K Stereo 0.122 0.786 4.014 0.198
CS + K Stereo 0.107 0.663 3.717 0.184

Ours (DFRNets) K Stereo 0.111 0.679 3.675 0.183
CS + K Stereo 0.096 0.539 3.325 0.168

Table 1
Error metrics. Monocular depth estimation results using the KITTI test set and the Eigen split. The bold 
values indicate the best results
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Table 2
Accuracy metrics. Monocular depth estimation results using the KITTI test set and the Eigen split. The bold 
values indicate the best results

Method Training 
Dataset

Train Accuracy Metric
(Higher Is Better)

δ < 1.25 δ < 1.252 δ < 1.253

Depth range: 0–80 meters
Eigen et al. (2014) Coarse K Depth 0.679 0.897 0.967
Eigen et al. (2014) Coarse + Fine K Depth 0.692 0.899 0.967
DDVO (Wang et al., 2018) K Mono 0.810 0.936 0.974

CS + K Mono 0.812 0.938 0.975
GeoNet (Yin & Shi, 2018) K Mono 0.793 0.931 0.973

CS + K Mono 0.802 0.934 0.972
Mahjourian et al. (2018) K Mono 0.762 0.916 0.968

CS + K Mono 0.784 0.923 0.970
Zhou et al. (2017) K Mono 0.678 0.885 0.957

CS + K Mono 0.718 0.901 0.960
Godard et al. (2017) K Stereo 0.803 0.922 0.964

CS + K Stereo 0.847 0.942 0.973
AsiANet 
(Yusiong & Naval, 2019)

K Stereo 0.824 0.936 0.970
CS + K Stereo 0.858 0.947 0.974

Ours (DFRNets) K Stereo 0.848 0.947 0.976
CS + K Stereo 0.878 0.958 0.979

Depth range: 1–50 meters
GeoNet (Yin & Shi, 2018) K Mono 0.810 0.941 0.977
Mahjourian et al. (2018) K Mono 0.781 0.931 0.975

CS + K Mono 0.802 0.935 0.974
Zhou et al. (2017) K Mono 0.696 0.900 0.966

CS + K Mono 0.735 0.915 0.968
Garg et al. (2016) L12 Aug. 8x K Stereo 0.740 0.904 0.962
Godard et al. (2017) K Stereo 0.818 0.931 0.969

CS + K Stereo 0.860 0.948 0.976
AsiANet 
(Yusiong & Naval, 2019)

K Stereo 0.864 0.953 0.978
CS + K Stereo 0.893 0.960 0.981

Ours (DFRNets) K Stereo 0.885 0.962 0.982
CS + K Stereo 0.909 0.969 0.985
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non-Siamese networks and then applying the post-processing step as in Godard et al. 
(2017). Table 3 shows that the models based on the proposed framework perform much 
better than the other models. In Table 3, K means the network was trained on the KITTI 
dataset without the post-processing step, similar to Godard et al. (2017); pp means a post-
processing step was performed on the output of the model, as in Godard et al. (2017); and 
Ours means DFRNets was implemented with the specified network architecture as the 
autoencoder. The results also demonstrate the versatility of the proposed framework, since 
it may use any network architecture that can generate disparity maps. Most importantly, 
the results clearly show the advantages of integrating a disparity refinement component 
into the depth estimation model.

Table 3
Architectural analysis. Results using the KITTI test set with a depth range of 0–80 meters. The bold values 
indicate the best results 

Figure 3. Qualitative results using the KITTI test set. A visual comparison of the results generated by the 
proposed method and with the results of Garg et al. (2016), Godard et al. (2017), and AsiANet (Yusiong & 
Naval, 2019). The ground-truth depth maps are interpolated for visualization purposes only. Best viewed in color.

Architecture Method Error Metric 
(Lower Is Better)

ARD SRD RMSE (Linear) RMSE (Log)
DispNet K 0.163 1.620 6.265 0.247

pp 0.153 1.360 5.884 0.235
Ours 0.149 1.316 5.788 0.229
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CONCLUSIONS

This work has presented an unsupervised learning framework, DFRNets, for jointly 
performing depth estimation and depth refinement using rectified stereo images during 
training. In essence, the model can be trained to simultaneously predict and refine disparity 
maps using a Siamese network architecture consisting of two autoencoders and a novel 
DFRM that performs disparity refinement as a trainable component of the model. The 
DFRM enables the model to more effectively handle visual artifacts and blurred boundaries, 
resulting in better performance. Moreover, this paper has shown that an existing training 
loss function can be reformulated for the joint learning and refinement of depth maps even 
though the original purpose was for depth estimation only. Experiment results using the 
KITTI 2015 driving dataset reveal that the proposed method achieved superior quantitative 
and qualitative performance compared to previous unsupervised state-of-the-art methods. 
In addition, the ablation study confirmed that the proposed framework is versatile, since 
it can use any encoder–decoder network architecture. Also, the results have revealed the 
advantages of performing these two tasks simultaneously and in an end-to-end manner 
rather than introducing a post-processing heuristic as a separate component of the model.
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Table 3 (Continued)

Architecture Method Error Metric 
(Lower Is Better)

ARD SRD RMSE (Linear) RMSE (Log)
ResNet K 0.148 1.344 5.839 0.233

pp 0.140 1.181 5.557 0.223
Ours 0.137 1.149 5.449 0.217

U-Net K 0.151 1.466 5.980 0.237
pp 0.141 1.223 5.585 0.224
Ours 0.138 1.210 5.543 0.219

AsiaNet K 0.145 1.349 5.909 0.230
pp 0.135 1.132 5.475 0.217
Ours 0.133 1.137 5.332 0.212
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